ENTHALPIC AND ENTROPIC CONTRIBUTIONS TO SUBSTITUENT EFFECTS FOR THE IONIZATION OF hfETA- AND *PA RA* **-NITROBENZOIC ACIDS IN WATER-DIMETHYLSULPHOXIDE MIXTURES AT 25°C**

FABRIZIO RODANTE

Istituto di Chimica della Facoltd di ingegneria. Via de1 Castro Laurenriano i, Rome (Italy)

(Received 11 January 1979)

ABSTRACT

Enthalpic and entropic contributions to substituent effects for the ionization of mand p-nitrobenzoic acids are examined, ranging from pure water to 0.8 mole fraction DMSO. The effect of the medium on the substituent and reaction constants is explained in terms of solute-solvent interactions. No structure-breaking effect was found.

INTRODUCTION

The enthalpic and entropic contributions to substituent effects for the dissociation of in- and-p-chlorobenzoic acids in H,O-DMSO mixtures have previously been examined [11. The present work examines the influence of the $-NO$, $(R⁻ I⁻)$ group on ρ and σ values related to the ionization processes **of nitrobenzoic acids at various mole fractions of H,O-DMSO solutions_** Some differences were found in the behaviour of $-Cl$ and $-NO₂$ groups.

According to Hammett [21 and others [3,4], the following equations may be written.

$$
(NO2-PhCOOH)X + (PhCOO-)X = (NO2-PhCOO-)X + (PhCOOH)X
$$
 (1)

$$
-\delta \ \Delta G^0 = 2.303 RT\rho \sigma
$$

where X (ranging from 0.0 to 0.8) is the mole fraction of the solvent.

The variation of the solvent composition affects the ρ and σ values in dif**ferent ways. By using experimental ionization values [51 of benzoic and nitrobenzoic acids, the standard enthalpy change for eqn. (1) is obtained as**

$$
\delta \Delta H^{\rm o} = \Delta H_{\rm NO_2-PhCOOH}^{\rm o} - \Delta H_{\rm PhCOOH}^{\rm o}
$$

In the same way, the $\delta \Delta G^0$ and $\delta \Delta S^0$ values related to process (1) can be **obtained.**

Equation (2) **may be written in the form**

$$
-\frac{\delta \Delta G^{\circ}}{2.303RT} = \rho_{\rm H} \sigma_{\rm H} + \rho_{\rm S} \sigma_{\rm S}
$$
 (3)

(2)

 $\rho_{\rm H}\sigma_{\rm H}$ and $\rho_{\rm S}\sigma_{\rm S}$ being defined by the relations

$$
\rho_{H}\sigma_{H} = -\frac{\delta \Delta H^{0}}{2.303RT}
$$
\n
$$
\rho_{S}\sigma_{S} = \frac{\delta \Delta S^{0}}{2.303R}
$$
\n(4a)

The ρ , ρ_H and ρ_S values are assumed to be equal to 1 in water at 25^oC and **1 atm.**

EXPERIMENTAL AND PROCEDURE

The calorimetric apparatus, the preparation of DMSO-H₂O mixtures and **the technique for obtaining values for the ionization of benzoic and nitroben**zoic acids have been described previously [6].

RESULTS AND DISCUSSION

The $\delta \Delta H^0$, $\delta \Delta G^0$ and $\delta \Delta S^0$ values of reaction (1) for *m*- and *p*-nitrobenzoic acids are given by eqns. (2), (4a) and (4b). The $\rho\sigma$, $\rho_H\sigma_H$ and $\rho_S\sigma_S$ **values are reported in Table 1. On the other hand, it is possible to calculate** the σ_m and σ_p values by using the $\rho_{m,p}$ values [1,7] for the dissociation of benzoic acids at the various DMSO mole fractions (see Table 2). $\rho_{m,p}$, σ_m and σ_p values are plotted against X_{DMSO} in Fig. 1.

As previously reported [l], the variations of the substituent and reaction constants at the various mole fractions can be attributed both to the solvent-solute interactions and to the structural alteration of the medium. As the resonance effect for the $-MO₂$ group undoubtedly exists, although not

$\boldsymbol{\mathrm{x}_{\text{DMSO}}}$	ρσ	mNO ₂			p -NO ₂	
		ρнσн	$\rho_S \sigma_S$	ρσ	$\rho_{\rm H}\sigma_{\rm H}$	$\rho_S \sigma_S$
0.0	0.736	-0.246	0.972	0.755	-0.243	0.998
0.1	0.894	-1.180	2.076	0.931	-0.122	1.052
0.2	1.048	-4.000	5.048	1.055	-0.217	1.270
0.3	1.173	-6.199	7.360	1.180	-3.500	4.680
0.4	1.319	-8.934	10.240	1.268	-3.460	4.730
0.5	1.436	-9.322	10.750	1.326	-2.350	3.660
0.6	1.539	-9.688	11.220	1.436	-3.394	4.820
0.7	1.649	-5.596	7.240	1.546	-4.310	5.850
0.8	1.708	-4.712	6.410	1.678	-7.200	8.730

Results of application of separated enthalpy-entropy and normal Hammett equations to m - and p-nitrobenzoic acids ionization in H_2O —DMSO mixtures at $25^{\circ}C$

30

TABLE 2

to a great extent, one can expect σ values that are independent of solvent **[8]. If it is assumed that the inductive and field effects are the same in both** the positions, $\sigma_m - \sigma_p$ should be a measure of the resonance effect (see Table 3). In the range $0.0 \leqslant X_{\text{DMSO}} \leqslant 0.3$, the resonance is effective (σ_m -

Fig. 1. Variation of the ρ and σ values for the m - and p -nitrobenzoic acids as a function **of the mole fraction at 25'C.**

Variation of the resonance effect $\sigma_m - \sigma_p$ as a function of the mole fraction at 25°C

TABLE 4

 σ values calculated by using enthalpic and entropic equations for the m - and p -nitroben-zoic acids in H₂O-DMSO mixtures at 25[°]C

TABLE 5

 ρ values calculated by using entropic equation for the m - and p -nitrobenzoic acids in H_2O —DMSO mixtures at $25^{\circ}C$

TABLE 3

Fig. 2. Variation of the σ_H and σ_S values for the m - and p-nitrobenzoic acids as a function of the mole fraction at 25°C.

 σ_p is negative) and strengthens the inductive effect. Beyond 0.3 mole fraction, the inductive effect prevails over the resonance effect and the order of substituent constants becomes $\sigma_m > \sigma_p$. The explanation of this pattern lies in the fact that at $X_{\text{DMSO}} = 0.4$ mole fraction, the p-nitrobenzoic acid mole-

Fig. 3. Variation of the ρ_S values for the m- and p -nitrobenzoic acids as a function of the mole fraction at 25°C.

cules are completely solvated [7], so that the electron charge density distrib**ution in the solute molecule is altered.**

The σ values display a limited dependence on the medium effect so that it seems reasonable to assume that the equations in water [9], $\sigma = 0.91\sigma_{\rm s}$ – 0.07 and $\sigma_s = -3.6\sigma_H + 0.15$, are valid over the whole mole fraction range. With this assumption, σ_H and σ_S values are calculated and tabulated (see Table 4). By using these values, it is possible to calculate ρ_S (see Table 5). σ_H and σ_s are plotted against DMSO mole fraction (Fig. 2), while the ρ_s values **are plotted in Fig. 3.**

Large negative σ_H values indicate that the undissociated molecules of **nitrobenzoic acids strongly interact with the solvent molecules. The fact that** the values of σ_S are larger than those of σ_H indicates that the external con**tributions are mostly entropy controlled [9], so that the solute-solvent** interactions are exclusively discussed in terms of ρ_S change.

Unlike the trend of the ρ_s values of the ionization of chlorobenzoic acids, the entropy reaction constants do not show a minimum at $X_{\text{DMSO}} = 0.5$. The **reaction constants of the** *meta* **compound are much greater than those of the** *para* compound, this being particularly so at $X_{\text{DMSO}} = 0.5$. This fact can be related to the drastic *meta-anion* desolvation [7].

REFERENCES

- **F. Rodante, Thermochim. Xcta, 31 (19'79) 221.**
- **L.P. Hammett, Physical Organic Chemistry, McGraw-Hill Kogakusha, Ltd., New York, 1970.**
- **H.H. Jaffe, Chem. Rev., 53 (1953) 191.**
- 4 T. Matsui, Hon Chung Ko and L.G. Hepler, Can. J. Chem., 52 (1974) 2906.
- 5 F. Rodante, Thermochim. Acta, 32 (1979) 293.
- **F. Rodante, Thermochim. Acta, 23 (19'78) 311.**
- **T_ Fujita and T. Nishioka, in R.W_ Taft (Ed.), Progress in Physical Organic Chemistry, Interscience. New York, 1956, p_ 49.**
- **L.D. &nsen and L-G. Hepler, Can. J. Chem.. 50 (1972) 1030.**
- **TX. Iirygoswski and W-R. Fawcett, Can. J. Chem., 53 (1975) 3622.**